Maximizing the Hilbert space for a finite number of distinguishable quantum states.
نویسندگان
چکیده
Given a particular quantum computing architecture, how might one optimize its resources to maximize its computing power? We consider quantum computers with a number of distinguishable quantum states, and entangled particles shared between those states. Hilbert-space dimensionality is linked to nonclassicality and, hence, quantum computing power. We find that qutrit-based quantum computers optimize the Hilbert-space dimensionality and so are expected to be more powerful than other qudit implementations. In going beyond qudits, we identify structures with much higher Hilbert-space dimensionalities.
منابع مشابه
Information and Distinguishability of Ensembles of Identical Quantum States
We consider a fixed quantum measurement performed over n identical copies of quantum states. Using a rigorous notion of distinguishability based on Shannon’s 12th theorem, we show that in the case of a single qubit the number of distinguishable states is W (α1, α2, n) = |α1 − α2| √ 2n πe , where (α1, α2) is the angle interval from which the states are chosen. In the general case of an N-dimensi...
متن کاملAn extension theorem for finite positive measures on surfaces of finite dimensional unit balls in Hilbert spaces
A consistency criteria is given for a certain class of finite positive measures on the surfaces of the finite dimensional unit balls in a real separable Hilbert space. It is proved, through a Kolmogorov type existence theorem, that the class induces a unique positive measure on the surface of the unit ball in the Hilbert space. As an application, this will naturally accomplish the work of Kante...
متن کاملThe witness set of coexistence of quantum effects and its preservers
One of unsolved problems in quantum measurement theory is to characterize coexistence of quantum effects. In this paper, applying positive operator matrix theory, we give a mathematical characterization of the witness set of coexistence of quantum effects and obtain a series of properties of coexistence. We also devote to characterizing bijective morphisms on quantum effects leaving the witness...
متن کاملLocal distinguishability of quantum states in infinite dimensional systems
We investigate local distinguishability of quantum states by use of the convex analysis about joint numerical range of operators on a Hilbert space. We show that any two orthogonal pure states are distinguishable by local operations and classical communications, even for infinite dimensional systems. An estimate of the local discrimination probability is also given for some family of more than ...
متن کاملفرمولبندی هندسی کوانتش تغییرشکل برزین
In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 92 9 شماره
صفحات -
تاریخ انتشار 2004